
How to Create a Secure Development
Lifecycle for Firmware

Presented by UEFI Forum

October 23, 2019

Welcome & Introductions

www.uefi.org 2

Moderator: Brian Richardson
Firmware Ecosystem Development
Member Company: Intel Corporation
@intel_brian

Panelist: Eric Johnson
Manager – Engineering Manager /
Security Coordinator
Member Company: AMI

Panelist: Brent Holtsclaw
Security Researcher
Member Company: Intel

Panelist: Dick Wilkins
Principal Technology Liaison
Member Company: Phoenix Technologies

Secure Development Lifecycle (SDL)

Process for developing demonstrably more
secure software, pioneered by Microsoft

Improves the capability to support, design,
develop, test, and release secure software

Train Require Design Develop Verify Release Respond

https://www.microsoft.com/en-us/securityengineering/sdl/practices

Applying SDL to Firmware

Today we want to discuss how SDL can be applied to UEFI

This means understanding design elements unique to platform
firmware, which are broken down into four major topics:

1. Secure Design

2. Secure Coding

3. Testing

4. Response To Security Vulnerabilities

As we cover these topics, please submit questions in the chat window. The panelists will
take questions at the end of the webinar.

Secure Design… Where to Begin?
You can’t have a secure design unless you understand what your security threats are…

What is Threat Modeling?

Wikipedia: “Threat modeling is a process by which potential
threats, such as structural vulnerabilities can be identified,
enumerated, and prioritized – all from a hypothetical
attacker’s point of view.”

https://en.wikipedia.org/wiki/Threat_model

Why Should You Threat Model?

• Firmware is an attractive target
o Key link in chain of trust
o Malware in firmware is invisible to host OS

• Firmware is rarely updated by end user
o Attackers have years to find vulnerabilities in code

• Documented threat model useful for quality assurance,
new hires, supplier audits, etc.

Threat Modeling Process

Define

Diagram

IdentifyMitigate

Validate

Define Security Requirements
• Consider what the component does and how it fits into your platform
• Requirements may be functional, non-functional, or derived

o Functional requirement defines what the system should do
o A non-functional requirement puts constraints on how the system may do

something
o A derived requirement is not explicitly stated, but is necessary to fulfill

derived or non-derived requirements
• A valid requirement must satisfy these questions:

o Is it testable?
o Is it measurable?
o Is it complete?
o Is it clear and unambiguous?
o Is it consistent with other requirements?

Understand Trust Boundaries

TR
U

ST B
O

U
N

D
A

R
Y

NOT TRUSTED TRUSTED

Untrusted Entity
Trusted
Process

Trusted
Process

PRIVILEGE
ESCALATION
INTEGRITY

INFO
DISCLOSURE

From Wikipedia: a boundary where
program data or execution changes its
level of "trust"

Create a Platform Diagram

More Trusted Less Trusted

O
S/

So
ft

w
a

re
U

E
FI

 F
W

FW
H

W

Hardware

BMC

UEFI Core
(SEC, PEI,

DXE)

MM RT

Legacy Code

Integrated
Option ROM

Platform
Code

Reference
Code

EN
D

_O
F_

D
X

E

SM
M

_R
EA

D
Y

_T
O

_L
O

CK

R
EA

D
Y_

TO
_B

O
O

T

EX
IT

_B
O

O
T_

SE
R

V
IC

ES

External
Option
ROM

CSM

BDS
BIOS
Setup

OS
Loader

ASL

PCH TPM Flash BMCCPU

ME/
PSP

UEFI Shell

Identify Threats
• Threats can be identified by analyzing the security requirements

and platform diagram
• Threats should be categorized for further analysis

o Techniques for analyzing threats: STRIDE, DREAD, PASTA,
LINDDUN, etc.

Carnegie Melon University Threat Modeling Guide:
https://insights.sei.cmu.edu/sei_blog/2018/12/threat-
modeling-12-available-methods.html

https://insights.sei.cmu.edu/sei_blog/2018/12/threat-modeling-12-available-methods.html

STRIDE
Threat Property Violated Definition Example

Spoofing Authentication Impersonating someone
or something else

Pretend to be OEM,
administrator, etc.

Tampering Integrity Modifying data or code Modifying SPI part, S3
Resume Script, etc.

Repudiation Non-repudiation Claiming to have not
performed an action

Claiming you did not
physically open computer
case

Information
Disclosure

Confidentiality Exposing information to
an unauthorized user

User password left in
memory

Denial of Service Availability Denying or degrading
services to users

Preventing system boot or
use of a resource

Elevation of Privilege Authorization Gain unauthorized
capabilities

Allowing MM arbitrary
code execution

Defense in Depth

• Provide complementary layers of security that work
together to protect platform

• Compromising one layer does not allow the compromise of
the entire system

• Example: Hardware root of trust + flash protection through
MM + cryptographically signed firmware -> Remote
attestation capability for auditing

Security Through Obscurity

• Firmware binaries are freely available online
• Tools to analyze binaries are available
• Security researchers are decompiling binaries

o Most 3rd party reports received include disassembled
code

Fail Safe

• Default platform configuration should be as secure as
possible

• Avoid fail-open conditions where a specific value is used to
enable security
o This prevents degraded security by tampering with

platform setup variables
• Corruption of platform configuration should not result in

platform hang

Trust No One

• Use a hardware root of trust to protect against tampering
• Protect SPI access (both for NVRAM and firmware itself)
• Cryptographically measure and validate code before

execution
• Lockdown MM before loading 3rd party code
• Validate all buffers / inputs into Management Mode
• Follow secure coding standards

Secure Coding… Common Problems?

Secure Coding

• Enemy #1, Buffer overflow/overrun
• Other common coding errors

o Arithmetic over/underflows
o Leaving manufacturing back-doors
o Cryptography, poor choices
o Time-of-check-time-of-use (TOCTOU) race conditions
o Memory leaks

Reducing Attack Surfaces

• Reduce complexity
o Remove unneeded features/services
o Disable network ports/services that will not be used

• Study your threat model for opportunities
• Fuzz testing of required interfaces

Compiler Features

• Static analysis
• Runtime Checks

o Stack cookies
o Heap checking
o No Execute (NX) data

• These features are available in the open-source Tianocore
implementation but must be enabled

• If checks fail, make sure they don’t result in a DoS

Special Considerations for Firmware

• Special considerations for Management Mode (SMM, Trustzone, Ring -2
code)
o MM code MUST never call code outside of SMRAM because an

attacker could have maliciously modified that code
o MM code MUST validate input parameters from untrusted sources

to prevent buffer reads/writes that extend into SMRAM
o MM code MUST copy input parameters and validate and use the

copy, to prevent time-of-check-time-of-use (TOCTOU)
vulnerabilities

• Because this code is so critical, special, in-depth code reviews are
warranted

Special Considerations (Cont.)
• Secure Firmware Update

o Don’t “roll your own.” Use common, open source update code
whenever possible

o Review custom implementations for vulnerabilities that have
been found and fixed in the open source implementation

o Enforce Signed Capsule Updates
o Enforce Rollback Protection
o Insure you are NOT using Manufacturing Mode for field updates
o Use a Hardware Security Module (HSM) or Signing Authority for

private key protection

Testing Firmware… How Hard Can It Be?

Testing Firmware is Different
• Limited methods of handling errors

o Asserts lead to hangs
o Many OS and compiler security measures are designed to

lead to exceptions or unloading the driver
o In firmware, these unloading a driver means not booting and

exceptions mean hanging
o This limits release usage of null-pointer detection, invalid access

exceptions, stack and heap checking
o A hang is a denial-of-service

• Logging and debug checks add code and lead to flash size issues

• Dynamic analysis tools don’t normally work with firmware out of the
box

Security Testing

Actual

software

functionality

Unintended,

undocumented,

or unknown

functionality

Traditional

faults

Intended

functionality

No authentication

Missing

defenses

Weak

authentication

Poor

defenses

Buffer overflow in

authentication

Extra

“functionality”

Targeted Code Review
• Where did you get your code? What process do they use?

o May increase/reduce need for additional review
o Participate in the projects you use

• Identify high risk code
o Threat modeling helps identify where weaknesses can lead to vulnerabilities
o Smart people have written down their experience. Use it

https://legacy.gitbook.com/book/edk2-docs/edk-ii-secure-coding-guide/details
https://legacy.gitbook.com/book/edk2-docs/edk-ii-secure-code-review-
guide/details

• High security risk is always a high review priority. What else?
o Old code/new code – Assumptions kill
o Code that runs with elevated privileges
o Code with a history of previous vulnerabilities
o Complex code
o Code with a high number of changes

https://legacy.gitbook.com/book/edk2-docs/edk-ii-secure-coding-guide/details
https://legacy.gitbook.com/book/edk2-docs/edk-ii-secure-code-review-guide/details

Top 25 Software Weaknesses
ID Name Score

CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer 75.56

CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') 45.69

CWE-20 Improper Input Validation 43.61

CWE-200 Information Exposure 32.12

CWE-125 Out-of-bounds Read 26.53

CWE-89 Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') 24.54

CWE-416 Use After Free 17.94

CWE-190 Integer Overflow or Wraparound 17.35

CWE-352 Cross-Site Request Forgery (CSRF) 15.54

CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') 14.10

CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') 11.47

CWE-787 Out-of-bounds Write 11.08

CWE-287 Improper Authentication 10.78

CWE-476 NULL Pointer Dereference 9.74

CWE-732 Incorrect Permission Assignment for Critical Resource 6.33

CWE-434 Unrestricted Upload of File with Dangerous Type 5.50

CWE-611 Improper Restriction of XML External Entity Reference 5.48

CWE-94 Improper Control of Generation of Code ('Code Injection') 5.36

CWE-798 Use of Hard-coded Credentials 5.12

CWE-400 Uncontrolled Resource Consumption 5.04

CWE-772 Missing Release of Resource after Effective Lifetime 5.04

CWE-426 Untrusted Search Path 4.40

CWE-502 Deserialization of Untrusted Data 4.30

CWE-269 Improper Privilege Management 4.23

CWE-295 Improper Certificate Validation 4.06

https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/732.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/611.html
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/400.html
https://cwe.mitre.org/data/definitions/772.html
https://cwe.mitre.org/data/definitions/426.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/269.html
https://cwe.mitre.org/data/definitions/295.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html

Unit Testing
• Develop unit tests with modules/libraries

o Use unit test to verify functionality
o Update unit tests to catch regressions
o Make engineering friendly!

• Enable unit test code as part of a Continuous Integration (CI) and
Continuous Deployment (CD) process

o Run unit tests as part of or triggered by patch acceptance
process

o Use unit tests to catch regressions early

• Use existing frameworks when possible
o https://github.com/tianocore/tianocore.github.io/wiki/Ho

st-Based-Firmware-Analyzer

https://github.com/tianocore/tianocore.github.io/wiki/Host-Based-Firmware-Analyzer

Other Tools

• Static analysis tools

• Fuzzers throw convincing but garbage data at an interface.
• Ex: LibFuzzer and AFL

• Code Coverage Tools check how much code was actually exercised
when fuzzing.
• May provide indications of dead code paths

• Hardware Setting Validators check hardware settings against most
secure configuration.
• Ex: CHIPSEC @ https://github.com/chipsec/chipsec

https://github.com/chipsec/chipsec

Testing Methodologies
• How is data validated

o Malicious data
o Sensitive data

• Look for known bad patterns
o Improper type/size of data
o Empty pass phrase
o Test/Dev keys and certs
o Previous coding errors found with the codebase

• Assume a high risk module/interface is compromised
o Where could an attacker transition
o What can an attacker enable/disable

• Evaluate security features
o How are they enabled/disabled
o How are they protected

Response To Security Vulnerabilities

Response To Security Vulnerabilities

• Have a plan and identified team to:
o Root cause issues
o Develop/deploy fixes
o Inform customers/clients
o Update your testing

UEFI Security Response Team
(USRT)
UEFI Security Response Team
• Made up of members from UEFI Promoters and others
• Primary Goals:

o Provides a point-of-contact for security researchers and
others, to report issues and vulnerabilities to the
membership of UEFI

o Works with UEFI members to enhance and coordinate
responses to actual and perceived vulnerabilities

o Works closely with the TianoCore open-source community
• Please report vulnerabilities you find to the USRT:

https://uefi.org/security or security@uefi.org

https://uefi.org/security
mailto:security@uefi.org

Summary

Summary
1. Understand the firmware threat model, and

how it differs from other software
2. Write code with fewer complexities and

smaller attack surfaces
3. When you test, think like an attacker
4. Have a plan for firmware updates and issue

reporting

Q&A

Thank you for attending

For more information, visit uefi.org

